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Transitions in a gauge model for nematic ordering
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We study the phase diagram of the Z(2) gauge model coupled to classical three-component spins in a
cubic lattice. This model has been introduced to describe the nematic transition with the gauge term
representing a disclination energy. We give the phase diagram in a mean-field approximation, also at
negative gauge couplings where two ordered frustrated phases are found. Moreover, by perturbative
methods and by expansion on the dual lattice, we study at positive gauge couplings the transitions in the
extreme regions of the phase diagram and consider the possibility that the nematic-isotropic transition

becomes critical at a tricritical point.
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Gauge models are introduced in condensed matter
physics to represent annealed disorder or defects [1]. Re-
cently, a classical Heisenberg model coupled to Ising
gauge variables has been considered [2] to describe the
nematic-isotropic transition in liquid crystals. Here the
gauge term is interpreted as an energy for disclination de-
fects, and the transition is related to a condensation of
defects. Usually, the nematic transition is described in
terms of a Landau free energy with a cubic term explain-
ing the first-order behavior [3]. In [2] it is observed that
a sufficiently high defect energy cost would make the
nematic transition critical. As a different physical inter-
pretation of the same Heisenberg-gauge model we ob-
serve that this model could also describe a magnetic sys-
tem coupled to annealed disorder.

The phase diagram given in [2] is based on numerical
simulations and on some expansions at extreme values of
the parameters. In this Brief Report we first give the re-
sult of a mean-field calculation reproducing the correct
topology of the phase diagram. We consider also the case
of negative gauge couplings, when the fluid system crys-
tallizes from the nematic phase into a fully frustrated
phase [4] through two first-order transitions separating a
phase with an intermediate frustration content. Second,
we accurately study the transition lines in the extreme re-
gions of the phase diagram by a type of high-temperature
or low-temperature expansion. We show how interacting
terms arising in these expansions could change the initial
critical character of the transitions into a first-order
behavior moving inside the phase diagram. In particular,
at next to first order in the expansion at large gauge cou-
plings, the model becomes equivalent to a model intro-
duced by Krieger and James [5], which exhibits a tricriti-
cal point [5,6]. Therefore the possible appearance of tri-
critical points in the gauge model of [2] is discussed.

The partition function of the model introduced in [2] is

Z(By,Bg)

= 3 exp|By > U;S;-S;
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where the S;’s are three-component unit vectors on the
sites of a cubic lattice and the Uj;’s are Ising variables
defined on the bonds. The sums in the exponent are over
nearest neighbors and plaquettes. The model is locally
invariant with respect to the gauge transformations
Uj—v:U;jvj S;—v:S;, with y;==x1. It can describe
liquid crystals if the vector S; represents the molecular-
axis direction field. The sum over Uj; takes into account
the irrelevance of the reciprocal orientation of the spins
S; and S;. In particular, at Bz =0 the sum over U;; gives
coshfB,S;‘S;, which has the same physical content of the
Maier-Saupe model [7] and coincides with it at small 3,,.
The plaquette term can be intended as an energy for dis-
clinations [2]. To illustrate this point in a simpler case,
consider for example two-component spins on a square
lattice. There are two ways depicted in Fig. 1 to realize a
frustrated plaquette with U,;;U; Uy, U; = —1. The corre-
sponding ground-state configurations are characterized
by a rotation of 27 [Fig. 1(a)] and 4+ [Fig. 1 (b)] of the
spin axis around the plaquette [4]. Therefore, if the spin
represents the director field, the frustrated plaquette can
describe a disclination.
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FIG. 1. Two-component spin ground states corresponding to
the two bond configurations giving a frustrated plaquette [4].
Bold bonds are antiferromagnetic. Angles between spins are al-
ways multiples of /4. In (a) the spin rotates by 27 around the
plaquette. The rotation angle is calculated by always rotating
the spin in the same direction and considering the minimum
global rotation. In (b) the spin rotates by 47. Two other
ground states with spins rotating in opposite directions are also
possible.
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The phase diagram of the model (1) can be studied in
the mean-field approximation based on the following ex-
pression of the free energy:

HBuBc)=—Bu (2) lym;m;—Bg ¥ L1yl
ij
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where /; and m; are the approximated mean values
of U; and S;, h; is implicitly defined by
|m;|=1;,,(h;)/1,,,(h;), and I,,, and I, are Bessel
functions of order } and 2, respectively. It can be shown
that it is sufficient to study the minima of the free energy
(2) over a single cube [8]. The resulting phase diagram is
shown in Fig. 2. At positive B; we find the nematic
phase N and the two isotropic phases T and I described
in [2]. The vertical line starting from B; =0, B), =1 isa
critical line separating the region T with m;,=0 and
Liililul; =1 from the nematic region at large By, where
|m,| >0 and I,;1; 1,1, ~1. Here there are 2" equivalent
ground states, corresponding to the gauge degeneracy (N
is the number of the sites of the lattice), with all the spins
in the same direction coupled ferromagnetically or anti-
ferromagnetically depending on the sign of the bond link-
ing them. The vertical line intersects the first-order line,
limiting the high-temperature phase I with m;=0,
Lijlyliuly =0 at the triple point B,,=0.505, B =0.69.
The first-order line starts from the B, axis at B;=0.69
and crosses the horizontal axis at 8, =1.55, which has to
be compared with the value B,,~1.95 found in Monte
Carlo simulations [2]. The N-I transition is also present
at small negative values of B;. By diminishing further
the value of B, defects proliferate and at sufficiently neg-
ative values of B; and large values of 3,,, there is a first-
order transition from the nematic phase to a partially
frustrated phase PF with four frustrated plaquettes for
each cube and a magnetization different from zero. At
still more negative values of B, after another first-order
transition, a fully frustrated phase FF with all plaquettes
frustrated is stable. In the gauge with the lowest number
of antiferromagnetic links, the bond configuration corre-
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FIG. 2. Phase diagram of the model (1) in the mean-field ap-
proximation. The phases T, N, I, FT, PF, and FF are described
in the text. The T-N and the FT-FF transitions are continuous,
all the other transitions are first order.

sponds to the odd model introduced by Villain [4], which
has at low temperatures a net magnetization different
from zero. Finally, at large negative B; there is another
vertical critical line separating an isotropic frustrated
phase FT with m; =0 and /;;/;xI};]; = —1 from the fully
frustrated phase. This line intersects the first-order line
at the triple point 3,,=0.99, B;=—0.69. We observe
that, differently from the gauge-invariant Ising model,
where the Ising spin variables can be washed away by a
gauge transformation, the spins here are not fictitious de-
grees of freedom and the transition at B;=0 is well de-
scribed in the mean-field approximation.

The mean-field approximation, on the other hand, does
not correctly describe everywhere the nature of the tran-
sitions. For example, at B8;,=0 and B; >0 the model is
dual to the Ising model with a continuous transition at
Bs=0.7613=—LIntanhf,, where B,=0.2217 is the
critical Ising inverse temperature in d =3 [9]. A more ac-
curate description of the phase diagram at B >0 can be
given by expanding the partition function in the two re-
gions at small 8, and large B;. The first expansion is a
high-temperature expansion of a Heisenberg model with
variable exchange interactions. Since only gauge-
invariant quantities have to be considered, the expansion
reads as

Uj;(tanhf3,S;S;) , (3)
r (ij)er

where the last sum is over the closed loops I of the lattice. If we expand to order B%, and trace over the spins S;, we get

the expression
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where T''® are the loops of length 6. We see that at the

order B, only the effects of the smaller loops have to be
considered, which produce a shift of the gauge coupling
B as Bg—Ba=Bg+ B4 /27. Therefore, at this order of
the expansion, one can predict a critical line given by
Bs=0.7613—p}, /27 and conclude that the Ising transi-
tion is stable moving inside the phase diagram, as ob-
served in [2]. However, loops larger than a plaquette
could be relevant for the nature of the transition. This
can be understood by writing the expression (4) as an Is-
ing spin system on the dual lattice. Following the same
procedure discussed in [10], we get the Ising reduced
Hamiltonian
His;}=FH 3 5i8; +F ZS,-sj
(ij) nnn
+&pla;sisjsks,+cicom > 5;8;SkSy 5 (5)
pla

corn

where the sums are over nearest neighbors, next nearest
neighbors, plaquettes, and corners, that is, clusters of
four spins with three of them nearest neighbors to anoth-
er one on a single cube. In terms of the original parame-
ters the new couplings are given by

I =Ba— B4 (3CS+C2S) , (6a)
Funn = B3 ($?+CS8?) (6b)
Jplazzi—gﬁglc?z , (6¢c)
Feorn= " 2:BuS> (6d)
where
C=cosh2fB¥, &=sinh2BF, (7
BF=—1lntanhBF , (8)
B%“=BG+%——23—SB?M . ©)

The critical line resulting from the study of the model
(5)-(9) is shown in Fig. 3, as obtained by Monte Carlo re-
normalization group calculations (see [10] and Ref. [21]
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which gives at small B,, a model described by the re-
duced Hamiltonian

FH(S;}=B% > Si'sj+3(4) > (8;-8; 2, (11)
(ij) (ij)
with
—388
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FIG. 3. Critical lines of the model (1) resulting from the ex-
pansions (3) and (10).

therein). As regards the nature of the transition, we see
that the loops of length 6 generate on the dual lattice in-
teractions between four spins, which are expected to
change the critical behavior into a first-order behavior.
For example, in a mean-field approximation, the model
(5)-(9) has a critical line with a tricritical point at
By =1.83. We will discuss later the relevance of this tri-
critical point for the phase diagram of the model (1).

In principle, a tricritical point could also occur on the
vertical transition at positive B;. The model (1) can be
expanded at large B;. At 8; =+ o each plaquette is not
frustrated and the variables U;; can be represented as the
product of Ising variables on the sites of the lattice. Then
these Ising variables can be adsorbed into a redefinition
of the Heisenberg spins and the model is equivalent to the
Heisenberg model with a critical transition at ,, ~0.69
[11]. At finite large B; a few of the plaquettes are frus-
trated. Considering only excitations with four frustrated
plaquettes, we get

s,.-sj]
Cij Y= kl)

f)] , (10)

The phase diagram of the model (11) is known in the
mean-field approximation [5], in the multicomponent lim-
it [6], and by numerical simulations [12]. The mean-field
approximation gives a critical transition at S =0.5 with
a tricritical point at 8 /g% = 2. This corresponds to the

critical line B, =0.5(1+2¢ ~*%¢) with a tricritical point
at B;~0.072. The approximation of [6] gives the critical
line B5f=w /2—2B(1—1/3w), where w ~0.505, with a
tricritical point at 8=0.191. This corresponds in the
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model (1) to the critical line By =w{l+2[1—w(l
—1/3w)le P6)/2 with a tricritical point at Bg
~ —0.05. The position of the tricritical point coming
out from simulations [12] is at B4 /B¥=0.6. In the fol-
lowing we will use mean-field results since other approxi-
mations do not give any significant improvement as re-
gards the phase diagram of the model (I 18).

The transition line By, =0.5(1+2e BG) intersects the
other critical line (see Fig. 3) at the point B,,=0.502,
B =0.758, which we know from the mean-field approxi-
mation and simulations to be a triple point [13]. We have
found on these lines tricritical points which occur beyond
the triple point so that they are irrelevant at this order of
approximation. In this respect the situation is the same
as in the gauge-invariant Ising model where tricritical
points are analytically predicted beyond the triple point
[10]. However, simulations [14] of the gauge-invariant
Ising model give tricritical points before the triple point,
while here, simulations [2] exclude this possibility.
Therefore the tricritical points we have found seem to be
really irrelevant. In any case, it is interesting to observe

that, differently from what was generally expected, terms
of higher order in the expansions (3) and (10) can change
the order of the transition.

In conclusion we summarize our results, consisting of a
careful description of the phase diagram of the
Heisenberg-gauge model (1) and also at negative gauge
couplings where new frustrated phases have been found.
At positive gauge couplings we have discussed the
possibility—not confirmed from simulations [2]—that
the nematic-isotropic transition becomes critical at a tri-
critical point, not at a triple point. Of course, the experi-
mental relevance of this observation is related to the pos-
sibility of independently varying the energy of disclina-
tions and the nematic interaction strength [2]. From the
theoretical point of view, we say that a better approxima-
tion is needed to study the phase diagram of gauge mod-
els coupled to matter variables close to the triple point.
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Hans van Leeuwen for discussions about the subject of
this paper.
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